Trace class multipliers and spectral variation of normal matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trace formula and Spectral Riemann Surfaces for a class of tri-diagonal matrices

For tri-diagonal matrices arising in the simplified Jaynes– Cummings model, we give an asymptotics of the eigenvalues, prove a trace formula and show that the Spectral Riemann Surface is irreducible.

متن کامل

Spectral Variation Bounds for Diagonalisable Matrices

This note is related to an earlier paper by Bhatia, Davis, and Kittaneh 4]. For matrices similar to Hermitian, we prove an inequality complementary to the one proved in 4, Theorem 3]. We also disprove a conjecture made in 4] about the norm of a commutator.

متن کامل

Estimating the spectral gap of a trace-class Markov operator

The utility of a Markov chain Monte Carlo algorithm is, in large part, determined by the size of the spectral gap of the corresponding Markov operator. However, calculating (and even approximating) the spectral gaps of practical Monte Carlo Markov chains in statistics has proven to be an extremely difficult and often insurmountable task, especially when these chains move on continuous state spa...

متن کامل

Matrices, Jordan Normal Forms, and Spectral Radius Theory

Matrix interpretations are useful as measure functions in termination proving. In order to use these interpretations also for complexity analysis, the growth rate of matrix powers has to examined. Here, we formalized an important result of spectral radius theory, namely that the growth rate is polynomially bounded if and only if the spectral radius of a matrix is at most one. To formally prove ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1998

ISSN: 0024-3795

DOI: 10.1016/s0024-3795(98)10013-7